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We show that nonmonotoniscillatory) decay of the boundaries of phase domains is crucial for the
stability of localized structures in systems described by Swift-Hohenberg equation. The less demopad
oscillatory are the boundaries, the larger are the existence ranges of the localized structures. For very weakly
damped spatial oscillations, higher-order localized structures are po$Sih@63-651X99)07010-5

PACS numbsd(s): 64.60.Ak

In a previous papefl] we analyzed the dynamics of of the opposite segments of the dark ring. The stability of
phase domains in the real Swift-Hohenberg equat®IiHE), such LSs was investigated ji] using a “monotonic” an-
satz,

A=A—A3—(V2+A)2A, () Ao(x)=y1—A%tanhx/x,), )

Ifor the straight domain boundary directed along thaxis

describing pattern formation in systems with a real orde ; ) .
gp 4 and with a half-widthx,, and also with the ansatz

parameterA(r) defined in two-dimensiona{2D) spacer

=(x,y) and evolving in timet, and whereV?= g%/ 9x? — 1-A2 _ n
+ 0%/ 9y. It has been shown that depending on the detuning Aolr) = V1= ATtanf (r =ro)/xoJtanti (r +1o)/Xol, (3)

A, a phase domain can contract, or expand. Contraction gy g circular phase domain boundary with radiys The
curs for small values of detuning parameters<(y2/7  analysis of the variational potential of SHE using the ansatz
~0.535 as obtained analytically ifl], and A<0.450 (3) yielded a potential minimum at some radius of the dark
+0.005 as obtained numericallyFor large values of detun- ring, predicting its stability, but the evaluated stability range
ing the domains expand leading to the “labyrinth” struc- (0.39+0.01<A<0.52+0.01) differs from the numerically
tures. For intermediate values of the detuning, the weaklyajculated stability range (0.287.001<A<0.460
contracting phase domains can stop contracting at a mini+.001). The ansat(8) corresponds to the mutual repulsion
mum radius, resulting in spatial localized structufeSs). of the opposite segments of the monotonically decaying dark
These spatial LSs, being symmetric dark rifgags of ring.
zero modulus of the order parame#g(r) ], are characterized  The discrepancy between the numerically calculated LS
by a phase difference of inside and outside of the ring. existence range and that following from a “monotonic” an-
Predicted for SHE ifi1], these LSs have been analyzed theo-satz (2) and (3) suggests that some other mechanisms are
retically and numerically in degenerate optical parametric oSresponsible for LS stability beyond that explored 1. We
cillators[2,3], and have been demonstrated experimentally insuggest in the present paper that a nonmonotonical decay of
degenerate four-wave mixingt]. Outside optics, theseor  domain boundaries is essential for LS stability. We assume
very similay LSs were observed in periodicallparametri-  that the domain boundaries can be better described not by a

cally) forced chemical systen{$]. These kinds of LSs are monotonic function(2), but rather by an oscillatory function,
characteristic in every spatially extended system displaying

supercritical pitchfork bifurcation, and are different from the A(x)=sgr(x)y1—A2[1—e “Mcogkx)], (4)
LSs associated with subcritical bifurcations studied before in
nonlinear optics and nonlinear physi&. with a spatial decay rate and a spatial frequendy:

Despite the above investigatioh$—3], the mechanisms We show in this Brief Report that the nonmonotonic an-
of stabilization of the supercritical LSs remain uncleaflh satz(4) leads to a perfect correspondence with the numerical
it was assumed that LSs are stabilized due to the balance oésults, thus justifying the role of nonmonotonic decay in the
contraction of a circular domain boundary and the repulsiorstability of LS. We show that the LSs stability range in-
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FIG. 2. Field profile around one-dimensional domain boundary.
Dots corresponds to the result of numerical integration of SHE in
1D; the solid line corresponds to the ans@tzusing the values of
o andk following from the spatial stability analysis. Detuning value
creases with increasing oscillations of nhonmonotonical dels A=0.4.
caying fronts. We interpret in this way the fact that the LSs . o .

ying P y obtained by numerical integration of SHE), are compared

in degenerate optical parametric oscillataiBOPOs are .~ <
more stable than those in SHE: the oscillations of decaying. Fig. 2. Note the good correspondence between both tech-

fronts in DOPOs are indeed larger than in SHE. We als Iques. . .
show that for very weakly damped spatial oscillatiokRo Ne>_<t we analyze the_ var|e_1t|onal pO‘GF‘“a' of SHB.
>1), higher-order localized structures are possible, such algquatlon (1.) can be wr!tten n t_he gradient forrd,A=
rings with triple radius. — 8F1 5A with the potential7(A) given by[8]

First we perform the spatial stability analysis of the sta- "
tionary solutions of SHE in order to explore the decay of the F= f
spatial perturbation, and to determine the expected spatial
decayo and spatial frequenclk. Boundary conditions, spa- L , . )
tial inhomogeneities of some parameters, or the presence of a Y& USe a variational approach in order to determine
domain boundaryas a defedtcan be considered as the spa- € parameters andk in the ansatz4) which minimizes the
tial perturbation of homogeneous solution. The stationary Sogc[))tent|al(3) in 1D, and(ii) to analyze the stability of LSs in
lution Ap= 1= A" s thus perturbed, Due to the contribution of the homogeneous background

A(X)=Ay+ SAeM+c.c., (5) Ag, an infinite value for the potential is obtained. Therefore
we need to calibrate the potent{&@) by subtracting this con-
where A is in general a complex quantity, in the forn  stant contributiorf1—9], which in the 1D case yields
=o+ik . The real part ofA indicates the spatial decay of
perturbation, while the imaginary part indicates whether = [ (A=A (AT-AD)
there is a nonmonotonic decay. f:f N 2 + 4
In the spatial stability analysis the temporal derivative in

FIG. 1. The decay parameter=ReA, and modulation wave
numberk=ReA, depending on the detuning, as follows from the
spatial stability analysis of SHE.

AZ A4 [(v2+A)A]2d .
2tat 2 0

— oo

—o0

Eq. (1) is set to zero. Inserting Ed5) into Eg. (1) and [(219x2+A)A]2  A%AS
linearizing the resulting system with respect to perturbations, + 2 5 X. (8)
one obtains

Integration of Eq(8) with ansatz4) gives a value for the
A=o+ik=V—-A=x+3A%2-2. (6) potential dependent on detunidgand on the parametets
andk. The values ofr andk corresponding to the potential
~ The dependence af andk on A following from Eq.(6)  minimum are given in Fig. 3 as depending on the detuning.
is given in Fig. 1.
In particular, Reg=0 for A= /2/3. For larger values of 15
detuning, only periodic solutions exist, which is in agree-
ment with the usual temporal stability analysis of the homo-
geneous solution. For zero detuniag: k=24 For positive
detuning the oscillations are more prominent than for nega- ok
tive detunings, as seen from Fig. 1. This is also in agreement
with the fact that, for large negative detunings, the SHE can
be reduced to a Ginzburg-Landau equati@iE), in which

1.0

0.5

is known the existence of monotonic solutions in the form 0.0
210
2 [7].
Motivated by these results of spatial stability analysis, we
construct an ansatz for fronts with nonmonotonic de@by FIG. 3. The decay parameterand the modulation wavelength

The ansat£4), using the values of andk given by spatial  k depending on the detuning, as follows from the variational analy-
stability analysig6), and the profile of a domain boundary as sis of SHE(compare with Fig. L
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FIG. 4. Comparison of the LS profile in 2D, as obtained numeri- A

cally (dotg and using the ansat8) (solid line). The profile of LS is _ )
taken at the line crossing the LS at its center. Detuning valde is ~ FIG. 5. The LSs existence range in the plane ob(d). The

=0.4. The inset shows the intensity distribution of the LS in themodulation wavelengtlk is given by the linear stability analysis
transverse plane. (6); the decay parameter is chosen freely. The existence ranges of

the single radius ring LSs and of the triple radius ring LS are plot-
Both following from spatial stability analysi@=ig. 1) or  ted. The variational potential corresponding to all characteristic
from variational analysi$Fig. 3), the oscillatory behavior is cases is shown in the insets.
more prominent for increasing detuning< k. For negative

detuningo>k, thus the oscillations are relatively strongly  The evaluation of potentiaB) using the ansat9) yields
damped. However, the dependencetoshown in Fig. 1 and e potential depending on the ring radiys As predicted
Fig. 3 differ one from another. Seemingly, the ansatz follow-from the 1D calculations, for smallarge detunings, the
ing from spatial stability analysis corresponds better forygiential monotonically increase@ecreaseswith the ra-
small perturbationsgfar away from the kink and the ansatz dius, leading to a contractiofexpansioh of the ring. For
following from the potential minimum corresponds better some intermediate values of the detuning, the potential ex-
close to the core of the kink, where spatial perturbations ar@jpits a minimum at some radius of the ring, as shown in the

finite. i Lo o insets in Fig. 5. This potential minimum indicates the exis-
The calibrated potenti&B) is positive in almost the whole  ance of localized structures.

detuning range, except for large detuning. The potential in  ag follows from variational analysis, the potential has a
2D is equal to the potential in 1D multiplied by the length of inimum  for  the detuning range Ae[A_ A, ]
the weakly curved domain boundary when the curvature ef-:[0_27,0_4§_ This range almost coincides with that ob-

fects are negligible in the potentig]. Then, in this approxi-  tained numerically, 0.2870.001< A <0.46Q+ 0.001. Again
mation, the sign off; , determines the evolution of the dark \ye note that the existence range calculate@ilinby using

ring of large radius. For positivéF,p (small detuning the the monotonic ansatz was much different from the numerical
large domains should contract, as the solution tends to minigpe.
mize the potential. For detunings larger than safne the Concluding, we show that the nonmonotonic decay of do-
1D potential is negative, thus the domains should expand. Agyain boundaries is essential for stabilization of the LS. The
our calculations show, the equilibrium case occurs at detungssumption of nonmonotonic decay allows us calculate pre-
ing value Aq~0.462, where the potential changes its sign.cisely the critical detuning value for contraction-expansion
This equilibrium detuning value has been obtained using thgf gomains, as well as the existence range of localized solu-
values of o and k following from the potential minimum  tjgns.
(Fig. 3. . » . Next we explore how the LSs stability range depends on
In a preceding papell] the critical detuning value was the modulation of the tails. For this purpose we assumed that
calculated using the monotonic ansatz. The obtained valuge dynamics of domains is described by SHE however
Ao=2/7=0.535 differs from that obtained numericall,  that the modulation of domain boundaries is enhanced by
=0.450+0.005. The critical detuning value using a non-some additional(perhaps nonvariationakeffects. This oc-
monotonic ansatz almost perfectly coincides with the nucurs, e.g., in DOPOs. The domain dynamics is essentially
merical one when parameters are obtained by the potentigoverned by SHE, since SHE is the order parameter equation
minimum, and they are improved with respect to the monofor DOPOs[10]. However, the presence of pump diffraction
tonic case using parameters given by spatial stability analyenhances the modulation of the frofitsl]. For this purpose

sis, where we found,~0.496. _ ~ we kept the value ok as follows from the spatial stability
Next we analyze the stability of ring-shaped domainanalysis of SHEk(A) is a function of detuning but varied
boundaries in 2D using the ansatz arbitrarily the decay parametet The approach is somewhat

artificial, but it allow: nderstand the role of illator
A =sgr(r ~roT= 52 [1-€ 0otk =1o)]  fronts i the stabilzation of LS.
X[1—e (" rdcogk(r +r))], (9) The result is plotted in Fig. 5. Clearly the LSs existence
range grows with increasing oscillations of the decaying do-
wherer  is the radius of the ring, and the decay parametersnain boundary(decreasing the parametet). The dashed
o andk are given by 1D variational study. The ans@and  curve corresponds to the decay ratecalculated from the
the numerically calculated LS profile are compared in Fig. 4spatial stability analysis of SHE5). The region abovébe-
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low) corresponds to spatial oscillations enhan¢géa@mped  ring radius. The potential corresponding to a higher-order LS
with respect to those in SHE. Then, for strong spatial oscilwith ry=3r g is shown in the inset of Fig. 5. The structures
lations the LS stability range significantly increases. This iswith radius three times larger than the fundamental have
in good correspondence witf2], where the LS stability been recently found numerically in DOPO [i8].

range in DOPO was found to be larger than in SHE.

For sufficiently strong oscillations, the LS stability range  We acknowledge discussions with C.O. Weiss, G.J. de
extends even to the negative values of detuning3]nLS at  Valcarcel, and E. Rolda. This work has been supported by
zero detuning were predicted. Also, besides the fundament@cciones Integradas, NATO Grant No. HTECH.LG 970522,
LS (the ring of minimum radius y=rg), higher-order LS and by DGICYT of the Spanish Government under Grant
may be stable, characterized by a set of discrete values &fo. PB95-0778-C02-01.
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