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We show that nonmonotonic~oscillatory! decay of the boundaries of phase domains is crucial for the
stability of localized structures in systems described by Swift-Hohenberg equation. The less damped~more
oscillatory! are the boundaries, the larger are the existence ranges of the localized structures. For very weakly
damped spatial oscillations, higher-order localized structures are possible.@S1063-651X~99!07010-5#

PACS number~s!: 64.60.Ak
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In a previous paper@1# we analyzed the dynamics o
phase domains in the real Swift-Hohenberg equation~SHE!,

] tA5A2A32~“21D!2A, ~1!

describing pattern formation in systems with a real or
parameterA(r ) defined in two-dimensional~2D! spacer
5(x,y) and evolving in timet, and where“25]2/]x2

1]2/]y2. It has been shown that depending on the detun
D, a phase domain can contract, or expand. Contraction
curs for small values of detuning parameters (D,A2/7
'0.535 as obtained analytically in@1#, and D,0.450
60.005 as obtained numerically!. For large values of detun
ing the domains expand leading to the ‘‘labyrinth’’ stru
tures. For intermediate values of the detuning, the wea
contracting phase domains can stop contracting at a m
mum radius, resulting in spatial localized structures~LSs!.

These spatial LSs, being symmetric dark rings@rings of
zero modulus of the order parameterA(r )#, are characterized
by a phase difference ofp inside and outside of the ring
Predicted for SHE in@1#, these LSs have been analyzed the
retically and numerically in degenerate optical parametric
cillators@2,3#, and have been demonstrated experimentall
degenerate four-wave mixing@4#. Outside optics, these~or
very similar! LSs were observed in periodically~parametri-
cally! forced chemical systems@5#. These kinds of LSs are
characteristic in every spatially extended system display
supercritical pitchfork bifurcation, and are different from th
LSs associated with subcritical bifurcations studied before
nonlinear optics and nonlinear physics@6#.

Despite the above investigations@1–3#, the mechanisms
of stabilization of the supercritical LSs remain unclear. In@1#
it was assumed that LSs are stabilized due to the balanc
contraction of a circular domain boundary and the repuls
PRE 601063-651X/99/60~5!/6153~4!/$15.00
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of the opposite segments of the dark ring. The stability
such LSs was investigated in@1# using a ‘‘monotonic’’ an-
satz,

A0~x!5A12D2 tanh~x/x0!, ~2!

for the straight domain boundary directed along they axis
and with a half-widthx0, and also with the ansatz

A0~r !5A12D2 tanh@~r 2r 0!/x0#tanh@~r 1r 0!/x0#, ~3!

for a circular phase domain boundary with radiusr 0. The
analysis of the variational potential of SHE using the ans
~3! yielded a potential minimum at some radius of the da
ring, predicting its stability, but the evaluated stability ran
(0.3960.01,D,0.5260.01) differs from the numerically
calculated stability range (0.28760.001,D,0.460
60.001). The ansatz~3! corresponds to the mutual repulsio
of the opposite segments of the monotonically decaying d
ring.

The discrepancy between the numerically calculated
existence range and that following from a ‘‘monotonic’’ a
satz ~2! and ~3! suggests that some other mechanisms
responsible for LS stability beyond that explored in@1#. We
suggest in the present paper that a nonmonotonical deca
domain boundaries is essential for LS stability. We assu
that the domain boundaries can be better described not
monotonic function~2!, but rather by an oscillatory function

A~x!5sgn~x!A12D2 @12e2suxucos~kx!#, ~4!

with a spatial decay rates and a spatial frequencyk.
We show in this Brief Report that the nonmonotonic a

satz~4! leads to a perfect correspondence with the numer
results, thus justifying the role of nonmonotonic decay in t
stability of LS. We show that the LSs stability range i
6153 © 1999 The American Physical Society
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creases with increasing oscillations of nonmonotonical
caying fronts. We interpret in this way the fact that the L
in degenerate optical parametric oscillators~DOPOs! are
more stable than those in SHE: the oscillations of decay
fronts in DOPOs are indeed larger than in SHE. We a
show that for very weakly damped spatial oscillations (k/s
@1), higher-order localized structures are possible, such
rings with triple radius.

First we perform the spatial stability analysis of the s
tionary solutions of SHE in order to explore the decay of
spatial perturbation, and to determine the expected sp
decays and spatial frequencyk. Boundary conditions, spa
tial inhomogeneities of some parameters, or the presence
domain boundary~as a defect! can be considered as the sp
tial perturbation of homogeneous solution. The stationary
lution A05A12D2 is thus perturbed,

A~x!5A01dAeLx1c.c., ~5!

where L is in general a complex quantity, in the formL
5s1 ik . The real part ofL indicates the spatial decay o
perturbation, while the imaginary part indicates wheth
there is a nonmonotonic decay.

In the spatial stability analysis the temporal derivative
Eq. ~1! is set to zero. Inserting Eq.~5! into Eq. ~1! and
linearizing the resulting system with respect to perturbatio
one obtains

L5s1 ik5A2D6A3D222. ~6!

The dependence ofs andk on D following from Eq. ~6!
is given in Fig. 1.

In particular, Req50 for D5A2/3. For larger values o
detuning, only periodic solutions exist, which is in agre
ment with the usual temporal stability analysis of the hom
geneous solution. For zero detunings5k521/4. For positive
detuning the oscillations are more prominent than for ne
tive detunings, as seen from Fig. 1. This is also in agreem
with the fact that, for large negative detunings, the SHE
be reduced to a Ginzburg-Landau equation~GLE!, in which
is known the existence of monotonic solutions in the fo
~2! @7#.

Motivated by these results of spatial stability analysis,
construct an ansatz for fronts with nonmonotonic decay~4!.
The ansatz~4!, using the values ofs andk given by spatial
stability analysis~6!, and the profile of a domain boundary a

FIG. 1. The decay parameters5ReL, and modulation wave
numberk5ReL, depending on the detuning, as follows from t
spatial stability analysis of SHE.
-
s

g
o

as

-
e
ial

f a

o-

r

s,

-
-

-
nt
n

e

obtained by numerical integration of SHE~1!, are compared
in Fig. 2. Note the good correspondence between both te
niques.

Next we analyze the variational potential of SHE~1!.
Equation ~1! can be written in the gradient form] tA5
2dF/dA with the potentialF(A) given by @8#

F5E
2`

` F2
A2

2
1

A4

4
1

@~¹21D!A#2

2 Gdr . ~7!

We use a variational approach in order~i! to determine
the parameterss andk in the ansatz~4! which minimizes the
potential~3! in 1D, and~ii ! to analyze the stability of LSs in
2D.

Due to the contribution of the homogeneous backgrou
A0, an infinite value for the potential is obtained. Therefo
we need to calibrate the potential~7! by subtracting this con-
stant contribution@1–9#, which in the 1D case yields

F5E
2`

` F2
~A22A0

2!

2
1

~A42A0
4!

4

1
@~]2/]x21D!A#2

2
2

D2A0
2

2 Gdx. ~8!

Integration of Eq.~8! with ansatz~4! gives a value for the
potential dependent on detuningD and on the parameterss
andk. The values ofs andk corresponding to the potentia
minimum are given in Fig. 3 as depending on the detuni

FIG. 2. Field profile around one-dimensional domain bounda
Dots corresponds to the result of numerical integration of SHE
1D; the solid line corresponds to the ansatz~4! using the values of
s andk following from the spatial stability analysis. Detuning valu
is D50.4.

FIG. 3. The decay parameters and the modulation wavelengt
k depending on the detuning, as follows from the variational ana
sis of SHE~compare with Fig. 1!.
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Both following from spatial stability analysis~Fig. 1! or
from variational analysis~Fig. 3!, the oscillatory behavior is
more prominent for increasing detuning:s,k. For negative
detunings.k, thus the oscillations are relatively strong
damped. However, the dependence onD shown in Fig. 1 and
Fig. 3 differ one from another. Seemingly, the ansatz follo
ing from spatial stability analysis corresponds better
small perturbations~far away from the kink!, and the ansatz
following from the potential minimum corresponds bett
close to the core of the kink, where spatial perturbations
finite.

The calibrated potential~8! is positive in almost the whole
detuning range, except for large detuning. The potentia
2D is equal to the potential in 1D multiplied by the length
the weakly curved domain boundary when the curvature
fects are negligible in the potential@1#. Then, in this approxi-
mation, the sign ofF1D determines the evolution of the dar
ring of large radius. For positiveF1D ~small detuning! the
large domains should contract, as the solution tends to m
mize the potential. For detunings larger than someD0, the
1D potential is negative, thus the domains should expand
our calculations show, the equilibrium case occurs at de
ing valueD0'0.462, where the potential changes its sig
This equilibrium detuning value has been obtained using
values ofs and k following from the potential minimum
~Fig. 3!.

In a preceding paper@1# the critical detuning value wa
calculated using the monotonic ansatz. The obtained v
D05A2/7'0.535 differs from that obtained numericallyD0
50.45060.005. The critical detuning value using a no
monotonic ansatz almost perfectly coincides with the
merical one when parameters are obtained by the pote
minimum, and they are improved with respect to the mo
tonic case using parameters given by spatial stability an
sis, where we foundD0'0.496.

Next we analyze the stability of ring-shaped doma
boundaries in 2D using the ansatz

A~r !5sgn~r 2r 0!A12D2 @12e2sur 2r 0ucos„k~r 2r 0!…#

3@12e2s(r 1r 0)cos„k~r 1r 0!…#, ~9!

wherer 0 is the radius of the ring, and the decay paramet
s andk are given by 1D variational study. The ansatz~9! and
the numerically calculated LS profile are compared in Fig

FIG. 4. Comparison of the LS profile in 2D, as obtained nume
cally ~dots! and using the ansatz~8! ~solid line!. The profile of LS is
taken at the line crossing the LS at its center. Detuning value iD
50.4. The inset shows the intensity distribution of the LS in t
transverse plane.
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The evaluation of potential~8! using the ansatz~9! yields
the potential depending on the ring radiusr 0. As predicted
from the 1D calculations, for small~large! detunings, the
potential monotonically increases~decreases! with the ra-
dius, leading to a contraction~expansion! of the ring. For
some intermediate values of the detuning, the potential
hibits a minimum at some radius of the ring, as shown in
insets in Fig. 5. This potential minimum indicates the ex
tence of localized structures.

As follows from variational analysis, the potential has
minimum for the detuning range DP@D2 ,D1#
5@0.27,0.46#. This range almost coincides with that ob
tained numerically, 0.28760.001,D,0.46060.001. Again
we note that the existence range calculated in@1# by using
the monotonic ansatz was much different from the numer
one.

Concluding, we show that the nonmonotonic decay of d
main boundaries is essential for stabilization of the LS. T
assumption of nonmonotonic decay allows us calculate p
cisely the critical detuning value for contraction-expansi
of domains, as well as the existence range of localized s
tions.

Next we explore how the LSs stability range depends
the modulation of the tails. For this purpose we assumed
the dynamics of domains is described by SHE~1!, however
that the modulation of domain boundaries is enhanced
some additional~perhaps nonvariational! effects. This oc-
curs, e.g., in DOPOs. The domain dynamics is essenti
governed by SHE, since SHE is the order parameter equa
for DOPOs@10#. However, the presence of pump diffractio
enhances the modulation of the fronts@11#. For this purpose
we kept the value ofk as follows from the spatial stability
analysis of SHE@k(D) is a function of detuning#, but varied
arbitrarily the decay parameters. The approach is somewha
artificial, but it allows us to understand the role of oscillato
fronts in the stabilization of LS.

The result is plotted in Fig. 5. Clearly the LSs existen
range grows with increasing oscillations of the decaying
main boundary~decreasing the parameters). The dashed
curve corresponds to the decay rates calculated from the
spatial stability analysis of SHE~6!. The region above~be-

-

FIG. 5. The LSs existence range in the plane of (1/s,D). The
modulation wavelengthk is given by the linear stability analysi
~6!; the decay parameters is chosen freely. The existence ranges
the single radius ring LSs and of the triple radius ring LS are p
ted. The variational potential corresponding to all characteri
cases is shown in the insets.
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6156 PRE 60BRIEF REPORTS
low! corresponds to spatial oscillations enhanced~damped!
with respect to those in SHE. Then, for strong spatial os
lations the LS stability range significantly increases. This
in good correspondence with@2#, where the LS stability
range in DOPO was found to be larger than in SHE.

For sufficiently strong oscillations, the LS stability rang
extends even to the negative values of detuning. In@3#, LS at
zero detuning were predicted. Also, besides the fundame
LS ~the ring of minimum radiusr 05r LS), higher-order LS
may be stable, characterized by a set of discrete value
um

ev
l-
s

tal

of

ring radius. The potential corresponding to a higher-order
with r 053r LS is shown in the inset of Fig. 5. The structure
with radius three times larger than the fundamental h
been recently found numerically in DOPO in@3#.
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